Полином — В математике, многочлены или полиномы от одной переменной функции вида где ci фиксированные коэффициенты, а x переменная. Многочлены составляют один из важнейших классов элементарных функций. Изучение полиномиальных уравнений и их решений… … Википедия
ОРБИТАЛЬ — (от лат. orbita путь, колея), волновая ф ция, описывающая состояние одного электрона в атоме, молекуле или др. квантовой системе. В общем случае квантовохим. термин О. используется для любой ф ции , зависящей от переменных х, у, z одного… … Химическая энциклопедия
homogeneous polynomial — vienalytis daugianaris statusas T sritis fizika atitikmenys: angl. homogeneous polynomial vok. homogenes Polynom, n rus. однородный полином, m pranc. polynôme homogène, m … Fizikos terminų žodynas
homogenes Polynom — vienalytis daugianaris statusas T sritis fizika atitikmenys: angl. homogeneous polynomial vok. homogenes Polynom, n rus. однородный полином, m pranc. polynôme homogène, m … Fizikos terminų žodynas
polynôme homogène — vienalytis daugianaris statusas T sritis fizika atitikmenys: angl. homogeneous polynomial vok. homogenes Polynom, n rus. однородный полином, m pranc. polynôme homogène, m … Fizikos terminų žodynas
vienalytis daugianaris — statusas T sritis fizika atitikmenys: angl. homogeneous polynomial vok. homogenes Polynom, n rus. однородный полином, m pranc. polynôme homogène, m … Fizikos terminų žodynas
Общий метод решета числового поля — (англ. general number field sieve, GNFS) метод факторизации натуральных чисел. Является наиболее эффективным алгоритмом факторизации чисел длиной более 110 десятичных знаков. Сложность алгоритма оценивается эвристической формулой[1] Метод… … Википедия
Многочлен — Запрос «Полином» перенаправляется сюда; см. также другие значения. Многочлен (или полином) от n переменных это конечная формальная сумма вида , где есть набор из целых неотрицательных чисел (называется мультииндекс), число… … Википедия
Показатель Гёльдера — (известен также как показатель Липшица) характеристика гладкости функции. Локальный (точечный) показатель Гёльдера характеризует локальную гладкость (локальную нерегулярность) функции в точке. В общем случае показатель Гёльдера является… … Википедия
Показатель Гельдера — Показатель Гёльдера α (известен также как показатель Липшица) характеристика гладкости функции. Локальный (точечный) показатель Гёльдера характеризует локальную гладкость (локальную нерегулярность) функции в точке. В общем случае показатель… … Википедия